A Numerical Method for Computing an SVD-like Decomposition

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Numerical Method for Computing an SVD-like Decomposition

We present a numerical method to compute the SVD-like decomposition B = QDS−1, where Q is orthogonal, S is symplectic and D is a permuted diagonal matrix. The method can be applied directly to compute the canonical form of the Hamiltonian matrices of the form JBTB, where J = [ 0 −I I 0 ] . It can also be applied to solve the related application problems such as the gyroscopic systems and linear...

متن کامل

Block Power Method for SVD Decomposition

We present in this paper a new method to determine the k largest singular values and their corresponding singular vectors for real rectangular matrices A ∈ Rn×m. Our approach is based on using a block version of the Power Method to compute an k-block SV D decomposition: Ak = UkΣkV T k , where Σk is a diagonal matrix with the k largest non-negative, monotonically decreasing diagonal σ1 ≥ σ2 · · ...

متن کامل

An SVD-Like Matrix Decomposition and Its Applications

A matrix S ∈ C2m×2m is symplectic if SJS∗ = J , where J = [ 0 −Im Im 0 ] . Symplectic matrices play an important role in the analysis and numerical solution of matrix problems involving the indefinite inner product x∗(iJ)y. In this paper we provide several matrix factorizations related to symplectic matrices. We introduce a singular value-like decomposition B = QDS−1 for any real matrix B ∈ Rn×...

متن کامل

JDSVD: A Jacobi-Davidson like SVD method

We discuss a new method for the iterative computation of a portion of the singular values and vectors of a large sparse matrix. Similar to the Jacobi-Davidson method for the eigenvalue problem, we compute in each step a correction by (approximately) solving a correction equation. It is shown that this JDSVD method can be seen as an accelerated (inexact) Newton scheme. We compare the method with...

متن کامل

A Jacobi Method for Computing Generalized Hyperbolic SVD

In this paper, we introduce a joint hyperbolic-orthogonal decomposition of two matrices which we call a Generalized Hyperbolic SVD, or GHSVD. This decomposition can be used for nding the eigenvalues and eigenvectors of a symmetric indeenite pencil X T X ? Y T Y where = diag(1). We also present an implicit Jacobi-like method for computing this GHSVD.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications

سال: 2005

ISSN: 0895-4798,1095-7162

DOI: 10.1137/s0895479802410529